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ABSTRACT 

Generalizations of the Laplace asymptotic method are obtained and real 
inversion formulae of the Post-Widder type for the Laplace transform are 
generalized. 

§1. Introduction. In §2 of this paper we shall obtain generalizations of what 
are  known as real inversion and jump formulae of the Post-Widder type for the 
Laplace transform. From our generalized inversion formula and certain heuristic 
considerations we shall obtain some new jump formulae. 

Generalizations of the Laplace asymptotic method necessary for proving the 
results of  §2 are stated and proved in §3. 

§2. Generalization of Post-Widder inversion and jump formula. Here the 
Laplace t ransformf(s)  of the function q~(t) is defined by 

(1.2) J(s) = fo °° e -~' qS(t)dt-  lim ~R e-S'qS(t) at 
R -* oo d O 

where tk(t)~ L.(0, R) for each R > 0 and the right hand side is supposed conver- 
gent for some finite complex s. 

The Laplace-Stieltjes transform of the function ~(t) is defined by 

(2.2) f ( s ) = f o  e - : td~( t )  lira (R =- e - S' d~( t ) 
R ~ o o  J O  

where ct(t) is of bounded variation in the interval [0,R] for each R > 0, ct(0) = 0, 
ct(t) = 1/2(ct(t + )  + ct(t - ) )  and the right hand side of  (2.2) is supposed convergent 
for some finite complex s. 
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Here ~b(x _+) are defined by 

(3.2) lim ~b(x -4-_ h) - ~b(x _ )  
h--*0 

if these limits exist. 
tk(x _ 0) will denote the numbers for which 

(4.2) f~  [~b(x _+ y) - ~b(x ___ 0)] dy = o(h) as h +0 

if such numbers exist. If ~b(x + 0) = ff(x - 0) then x is a Lebesgue point of ~b(u). 
Post [5] obtained a real inversion formula. Widder [6] and also Feller [2], 

Dubourdieu [1], and especially Pollard ([3] and [4])generalized Post's result. 
The final result obtained by Pollard is the following (see [5], Theorem 1.1, second 
part): 

THEOREM A. Suppose f(s)  is a Laplace transform and both ~(t-t-O) exist; 
let {ak}, k >  1, be any sequence satisfying ak=O(kll2), k--* oo; then 

+ '  0,] 

Pollard ([5], Theorem 1.1) stated that if in addition to the hypotheses of 
Theorem A we assume qS(t + 0) = tk(t - 0), then (5.2) is true for any sequence 
{ak} satisfying ak = o(k), k ~ oo. We could not prove this last result and shall show 
by an example that one of the main steps in his proof is incorrect. 

The step in question (see [5] top of page 449) is that, for 0 < 6 < 1 and 
Ok = o(k), k ~ 0% 

[' 
(5a.2) ] Pk(u)du 

d k [ ( k  + Ok) 

and 

fk;(k+Ok) Pk(u)du 
where 

Pk(U) - 

show 

fo -6 <= Pg(u)du 

f f  ( )d < P u u -~- k 
+0 

(k(k  + --Ok)k+ e-(k+O~)"Uk-l(1 -- U) (1 

We shall 
x/ k = O(Ok), k ~ 0o. 

For k > ko (since 0 k = o(k)) we have 

O < ( 1 - u ) ( 1  k +Ok ) ~ u l  = l -  

< l + 3 u + 3 u  2 

< 6 ,  for 0 < _ u < _ l - 6 < l .  

that these two inequalities are not 

k u ~. 

true if, for example, 

k+Ok UZ (1 + kkO-----L ) u +  , ~  
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Hence, for k > ko, 

fo 1-° (k + Ok)k+l ~o*-a ek(u)du <= 6 -(k---i~i e-(k+°~)"u*-i du 

The integrand in the last integral is increasing from u = 0 to 

k - 1  
u -  - - ( - } 1  as k ~ m ) .  

k +  Ok 

Therefore for k > k I > ko 

~0 
1 - ~  

Pt(u)du < 6(1 - ,5) k (k  + Ok) k+l ( k -  1)! e-(l-O)(k+O~) 

(and by Stirling's formula) 

{ ,-, Aexp - k l o g  ~ + ( k + l ) l o g ( k + 0 t ) - ( 1 - a ) ( k + 0 k )  

- 1 

= Aexp - k log 1 _----Z- ~ -  5 + o(1) + -~-logk 

(and since 5 < log 1/(1 - 3) for 0 < 5 < 1) 

- - * 0  a s  k---* oo.  

Hence 

1 - ( ~  

(5b.2) lim Pt(u)du = 0 
k -"~ co 

Now 

Hence 

(5c.2) fk t Ok)k+ 1 1" I d {uke_(k+Ok)u} du 
/(k+Ok) Pk(u)du _ ( k  + .. -Jk/(k+O~,~ l -- U) ~U 

kte -k (k + 0,) ~+* f ~  uke-(k+Ok), du 
k! Ok + k! JR/ck+Ok) 

[1 + o(1)]Ok + 1£k+°~ 
x/2=k ~.v 

vk e -~ dv .  
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= v k e-¢dv = 1. v~e-Vdv < -~. o 

If now x/k  = o(0k)then I as k - ,  and 

r' I (5d.2) lira J, P~(u)du = O0. 
k ~ o ~  I J k l (k+Ok)  

Relations (5b.2) and (5d.2) are in contradiction with (5a.2). Similarly it can be 
shown that the second inequality used by Pollard is not  true if ~/k = o(0k), k --* oo. 

Our first result is a generalization of Theorem A. 
In order to state our theorem we need the following notation. 
a) A sequence {ak}, k > 1, belongs to class A(~) for some real 2 if 

b) A sequence {ak} belongs to class B if ak = o(k), k -.* m. 
c) A sequence {ak} belongs respectively to class B÷(B - )  if {ak} ~ B, 

I a~l k-1/2 "* m as k ~  co and for some k > ko, ak > 0(ak < 0). 
d) A sequence {ak} belongs to class A* if ak -- O ( ~ k )  as k ~ Qo. 
Denote by N(t)  the normal distribution function, 

(6.2) N(~)I--- - ~ f _ ~  e-"~/2du. 

For k = 1, 2 ... . .  t > 0 and a given sequence {ak} the operator Lk,t,ok I f (x) ]  is 
defined by 

(7.2, L, . tak[ f (s ,  ] -- ( k ~ ) ~  ( ~ - ~ ) ' + ~ f ( ~ ' ( ~ - ~ ) .  

THEOREM 1.2. Suppose f (s)  is the Laplace transform of c~(u). For f ixed t > O, 
(i) I f  {~k} ~ A(~) and both ~p(t +_ O) exist then 

lira Lk,t,~ ~f(x)] = N(A)c~(t - 0) + (1 - N(2))c~(t + 0). 
k"* oO 

(ii) I f  {a~} ¢B  + and c~(t - )  exists then 

lira Lk.t.o~ If(x)]  = ~b(t - ). 
/¢~oo 

(iii) I f  {ak} ~ B-  and dp(t + ) exists then 

lira Lk.t,o~ I-f (x)] = ~b(t + ). 
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(iv) I f  {ak} ~ B and c~(u) is continuous at a point  t > 0 then 

lim Lk,,,a~[f(x)] = c~(t). 
k"-~ ¢o 

(v) / f  {ak} eA*  and both ck(t +_ O) exist and ?p(t + O) = c~(t - 0), then 

lim Lk,t,a~ I f (x) ]  = ~b(t + 0). 
k~co 

We shall obtain the following two analogous results for the Laplace-Stieltjes 
transform. We begin by defining the operator Sk,t,,~: 

Given t > 0 and a sequence {ak}, k = 1,2, ..., we define 

(8.2) Sk,t,a~[f(s)] = f (oo )  + ( -- 1) k+l f ~ f 
U k 

J(k+ak)l, tk+t~ (u)-~. du 

THEOREM 2.2. Suppose f ( s )  is the Laplace-Stiel t jes  transform of  ~(t). Then  

f N(2)~(t - ) + (1 - N(A))ct(t + ) i f  {ak) ~ A(2) / 

lim Sk,,.a~[f(s)] = I ct(t -- ) i f  {ak} E B  + 

k-,~ I ~(t + ) if {ak} e B -  
/ 
[ ~(t) i f  ot(t - ) = ct(t + ) and {ak} e B. 

THEOREM 3.2. I f  f (s) is the Laplace-Stiel t jes  transform of  ~t(u), then 

f N(2)0t(t - ) + (1 -- N(2))~t(t + ) -  ct(0+)if {ak} eA(2)  

l o:(t ) o~(0+) if {ak} B + 

lira f l  Lk'"'ak[f(s)]du = ~(t + ) - ~(0 + ) i f  {ak} E B-  
k-'~ oo / 

[ ~(t) -- ot(O + ) i f  ct(t -- ) = ~(t + ) and {ak} ~ B 

If  we choose in the last three theorems ~k = o(kl/2) k-~ oo we get Pollard's 
results [5]. 

Theorems 1.2, 2.2 and 3.2 will be proved in §4 by using improvements of  the 
Laplace asymptotic method which are stated and proved in §3. These improve- 
ments are stated in a slightly more general form than is needed for proving the 
results of this paper. The more general form will be needed in a later paper. 

From Theorems 1.2, 2.2 and 3.2 we can deduce immediately the following 
trivial jump formulae. 

COROLLARY 1.2. Suppose f ( s )  is the Laplace transform of  d~(u). I f  f o r  some 
t > 0 both ~(tl_+ 0) exist and (ak} ~A(2 t )  , (bk} ~ A(~,2) (21 :~ '~.2), then 

1 
lira {L~.t,b~ If(s)]  -- Lk,,.~ I f (s ) ] )  = ~(t + O) -- $(t -- 0). 

N(;q) - N(~2) k-~o 



90 z. DITZIAN AND A. JAKIMOVSKI [June 

COROLLARY 2.2. Suppose f ( s )  is the Laplace  transform of  ¢(u).  I f  f o r  some 
t > 0 both ¢( t  + ) exist and {ak} ~ B +, {bk} e B - ,  then 

lim {Lk,,,b~[f(s)] -- Lk,, a~[f(s)]} = ¢(t  + ) -- ¢(t  -- ). 
k'-* oo 

COROLLARY 3.2. Suppose f ( s )  is the Laplace-Stiel t jes transform of  a(u). For 
f i xed  t > 0 we have 

(i) / f  {ak} ~ A(,tl) and {b,} ~ A(22) (21 ~ ;t2), then 

1 1) k+l ~{k+a.)/, U ~ 
N(21) -- N(22) lim ( -- . ~ . . f  (k+X)(u)du = a(t + ) -- a(t -- ) 

k ~  o~ .l (k + bk)/ t  

(a )  

and 

(b )  
1 r :  

lim Jo  {Lk'u'bk[f(x)] -- Lk .... k [ f ( x ) ] }du  N(;q) - N(22) k-.co 

= ~(t  + ) - ~(t  - ). 

(ii) / f{ak}~B + and { b k } ~ B - ,  then 

(c) lim {Sk,t,ok[f(x)] -- Sk,,,ak[f(x)]} = u(t + ) -- a(t -- ) 
&--*co 

and 

(d) lim (t{Lk,u,bk[f(x)] -- Lk,u,a~[f(x)]}du = ct(t + ) - a(t - ). 
k"* co d O  

The following heuristic considerations lead to a new non-trivial jump formula. 
Choose in Corollary 1.2, b k - a k = (22 - 21) ~/E 

1 
¢(t + 0) - q~(t - 0) = lim N'2 ) .lim {Lk,t ,b~ ' [ f (x)]  -- L,. t ,ak[f(x)]}  

(changing formally the order of  the limits) 

= l i m  lim N(21 ) -N( ; t 2 )  2 1 - 2 2  k! " ~ (k) 

_ } __ 

= l i m  x/~-keX'/21im 1 ( - 1 ) k  { ( ~ + ~ _ ~ )  ' + '  f tk ,  ( ~ . ~ . )  
~-.~o al-.*= ( 'h  - & ) x / f c  k!  
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k ~  
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~r.~¢ '~ (- 1)'+~ t, ,--v-,C ~+ ~I'~+'~,-T-, s(~' (~ ~ ~--~ ) 

-7  • 

This suggests Theorem 4.2, which we shall prove formally below in ~4. 

THEOI~M 4.2. Suppose f ( s )  is the Laplace transform of d~(u) and that f o r  some 
t > O, both q~(t ++_ O) exist. Let  {ak} e A(2), and Ok = O(X/k), k --* oo. Then 

limk~oo N/~k ( --~l~~ 1)k { ( - - - - f - - )  -F a k k k Jr O k (k) ( ~ _ f ~ )  

A - T  1 k _ _  a k f(k+ 1) = q~(t + 0- -  ~b(t- 0). 

Choosingin Theorem 4.2 2 = 0, a k : 0 and O k = 0 for k > 1we get 

COROLLARY 4.2. Suppose f (s)  is the Laplace transform of dp(u). I f  for  some 
t > 0 both d?(t +_ O) exist, then 

= ~ ( t  + 0 )  - ~b(t - 0 ) .  

A formal computation similar to that used in obtaining Theorem 4.2 yields 

THEOREM 5.2. Suppose f (s)  is the Laplace-Stieltjes transform of a(t) and let 
{ ak} ~ A(2). Then 

lira ( - 1  )~+i 
~-.~o k! \ t / 

= a(t  + ) - - ~ ( t - - )  

Choosing in Theorem 5.2 2 = 0, a~ = 0 for k = 1 we obtain the Widder jump 
formula (see [7] p. 298). 

In Theorems 4.2 and 5.2 {ak} e A()O, therefore a k = 0 ( x/ k) (k ~ oo). Hence 

k ak e k~°g(l+("k/k)) ~ e"ke-1/2("~/k) e"k-(~2/2)(k~ oo). 

Therefore we may state the results of Theorem 4.2 and of Theorem 5.2 in, res- 
pectively, the following two equivalent forms: 

= ~ ( t  + 0 )  - q , ( t  - 0 )  

lim e .+ .~  ( _  1 ) k  f ( k ) ( ~ - ~ ) = ~ ( t + ) - - ¢ t ( t - - ) .  
k-~oo 
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§3. The Laplace asymptotic method. In this section we shall obtain and 
prove some results which are the basis for the proof  of  our theorems in §2 and in 
part 2 of this paper. The results of this section are generalizations of  the classic 
Laplace asymptotic method. 

TrmOREM 1.3. Let (i) a, b, rl, ~ and 2 be real numbers satisfying a < b, 6 > 0 
a n d O < t l < b - a .  

(ii) h(x) ~ C2(a - 6 < x < a + tl), h'(a) = O, h"(a) < 0 and h(x) is non in- 
creasing in a < x < b. 

( i i i )  {ak} ~ A(2). 
(iv) {g(k)}, k >= 1, is a sequence of real numbers satisfying g(k) ~ k, k ~ oo. 

Then 

0 .3)  lira e-g(k)h(")~/"~ e e(k)h(~) dx = 1 -- N(2~ x/--h"(a) ) 
k-,® ~[ 2r( Ja+mc.e(k)-1 

Proof. 

= + ( ) dx - I k + J~ (say). 
27~ I. d a+ak . g ( k ) - I  + q l  

By the arguments used in Widder 117] p. 278 we see that ,  for any 0 < r/t < t/, 

(2.3) lira Jk = 0 
k---~ oo 

By (ii), for x e [-a - /5 ,  a + th] ,  we have h(x) - h(a) = [(x - a)2/2] h"(~(x)) where 

~(x) e [x, a] if x < a or ~(x) ~ i'a, x] if x > a. Now 

~ - k h " ( a )  f "+~l [ ~ ]  
Ik = 2• J,+,k" g(k)-I exp g(k) h"(~(x)) dx. 

For  any fixed e satisfying - h"(a) > e > 0 we can define ~/1, 0 < r h < r/, and (51, 

0 < 61 < 6 so that, for x~11a - 61,a + rh], 

(3.3) h"(a) - ~ < h"(x) < h"(a) + e. 

Denote, respectively, 

-- exp g(k)(h"(a) +_ e) (x dx 
2~ ,l a+ak" g(k) -1  

~ - - - k - - ~  h"(a) ( N ( r ] l g ( l c ) t / 2  x / - ( h " ( a )  ± e) ) 
= ~ h"(a) +-------~e 

-- N(akg(k) -1/2 x / -  (h"(a) -T- e))) 
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N(u) is a continuous function, and hence 

(4.3) k~limoo Ik~= X/ h"(a)h"(a)4- e (1 - N(2 ~ / -  (h"(a) 4- 8)). 

By (2.3) and the definitions of Ik~and I k, Ik <= Ik <-- I~.  Hence by (4.3) and since 
e > 0 is arbitrary we get 

(5.3) lim I k = 1 - N ( 2 ~ [ -  h"(a) ) 

Our result follows from (2.3) and (5.3) combined. Q.E.D.  

COROLLARY 1.3. Let (i) a, b, ~l, t~ and 2 be real numbers satisfying a < b, 6 > 0 
and O < ~l < b - a. 

(ii) h(x) ~ C2(a - ~1 <- x <_ a + 6), h'(a) = 0, h"(a) < 0 and h(x) is nonde- 
creasing in b <- x <_ a. 

(iii) {ak} and {g(k)} satisfy conditions (iii) and (iv) of Theorem 1.3. 
Then 

/ - kh"(a) I~a+ak'g(k)-t 
(6.3) lim e-gtk)h(a)jb eg(k)h(x)dX = N(2 x/" - h"(a) ) 

2~ k-* 

ProoL The proof follows from Theorem 1.3 by substituting x = - z. 

THEOREM 2.3. Suppose (i) a, b, ~/, t~, 2, h(x), {ak} and {g(k)} satisfy conditions 
(i), (ii), (iii) and (iv) of Theorem 1.3. 

(ii) For the functions C~k(U), k)>=)l, defined on [a + akg(k)- l ,b]  and for  some 
finite M we have 

~(u du < M for k=>l  
+ak "g lk) -  t 

(iii) lim k~oo~k(a + ak.g(k) -1 + O) exists and is equal to A. 
(iv) Denote 

ctk(x) - [tkk(u) - q~k(a + a k g(k) -1 + 0)] du 
+a k " g ( k ) -  1 

for  k >= 1 and x ~ [a + a k" g(k)- 2, b]. Suppose that for  each el > 0 there exists 
a sufficiently small p(el), 0 < p(el) < (b - a)/2, such that for  each k > 1 and 
all x satisfying 0 < x - (a + ak.g(k_6) < p(el) we have 

I <= Ix - ( a  + a k g ( k ) - i ) [ .  
Then 

/ fb - -  kh"(a) -g(k)h@) dpk(x) e ~(k)h(~ dx (7.3) lira e 
k ~  ~-~ J~+~k" ~(k)- ~ 

= A(I - N ( 2 x ] ' -  h"(a)). 
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Proof. In order to prove our theorem it is enough by (1.3) to show that 

(8.3) lira ~/k [4~k(x) - A] exp [g (k ) (h (x )  - h(a))] dx  = 0. 
k~oo +ak "g(k)-  1 

(1.3) yields by condition (iii) that 

f; (9.3) lim ~/k [dA(a+ a k ' g ( k )  -~ + 0) -- A]" 
k~oo +ak "g(k)- 1 

" exp [g(k) (h(x)  - h(a))] dx = O. 

In order to prove (8.3) it is enough by (9.3) to show that 

Ik - ~fk [~k(X) -- q~k(a + ak" g ( k ) -  1 + 0)]" 
a+ak "g(k)-  1 

• exp [g (k ) (h ( x )  - h(a))] dx  = o(1) as k--, ~ .  

Denote I k = lk,1 + Ik,2 where Ik, ~ and I,,  2 are respectively the integrals on the 
intervals [a + a k ' g ( k )  -1 ,a  + ~h], [a + ~h,b]. Now by (ii) for each fixed ~h > 0 

IIk.2 [ < X/-~ e x p [ g ( k ) ( h ( a  + ~h) - h(a))] - Ckk(a + a k ' g ( k )  -1+ 0)[ du 

= o(1)  (k  ~ oo).  

Integration by parts yields 

Ik, I = ~fk exp [ g ( k ) ( h ( x )  - h(a))~k(x)]~+~'k, e(k)- '  -- 

. - -  / ~ a + q t  

- -  ~/k  g(k)Ja+a k'e(~)-' ~ ( x ) h ' ( x ) e x p  [g(k)(h(x) - h(a))] dx - Ikl  1 + Ik12 

By (ii) and the fact Ctk(a + a k ' g ( k  )-  1) = 0 we have Ikl 1 = o(1)~ k ~ ~ .  For a given 
e I let p be that e~isting by (iv); let r h be the same as that in the proof of Theorem 
1.3 and suppose also r h < p. 

f 
a + f f l  

l I , , :  [ < kll2g(k)" I ~k(x) [ [ h'(x) I exp [g (k ) (h (x )  - h(a))-l dx 
,,1 a+ak "g(k)- 1 

(by (iv)) 

f a + q t  < ~1 kl /2" g(k)  (x  - (a + a k g(k)  - 1))1 h"(~(x))(x  - a)  I • 
da+ak "g(k)- 1 

• e x p [ g ( k ) h " ( , ( x ) )  ( x - a ) 2 - ] d x  

~a+r l t  

<= ~1 kI/2 " g ( k ) ( -  h"(a) + e) Ix  - a II - a - a k .g (k )  -1 1" 
~ a+ak * g(k)-  1 

" e x p [ g ( k ) ( h ~ ( a ) + e ) ( x 2 a ) 2 ] d x  
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Then 

~ - kh"(a) fo "+ak'~(il-' (10.3) lim 2rr e-e(k)h(a) ~)k(X). egtk~ht~)dx 
k"* oo 

= A N ( 2 \ / -  h"(a)). 

Proof. The same proof as that  of  Theorem 2.3 

THEOREM 3.3. Suppose that (i) a, b, p, rl and 6 are real numbers satisD, ing 
p < a < b ,  0 < t / < b - a ,  0 < 6 < a - p .  

• l ( x -  a)2 + I x -  a l l a k l g ( k ) - ~ ] d x  

(and by the substitution u = x / -  (g(k)/2)(h"(a) + e) ( x - a )  together with 

lakl < ck'/2 <= c, g(k) ''2) 

< M,el  e-U2u2du + M38t ue-"2du _<-. exMa 
¢1) 

By letting 81 ~0 we get Ikl~ = O(1) as k-* oo. Q.E.D.  

COROLLARY 2.3. Suppose (i) a, b, q, 6, 2, h(x), {ak} and {g(k)} satisfy conditions 
(i), (ii), (iii) and (iv) oJ Corollary 1.3. 

(ii) For the functions ~Pk(U) defined on [b,a + ak'g(k) -1] and for  some finite 
M we have 

b "+"k'g~k'-~ 16~(x)ldx < M for k > 1. 

(iii) limk_.oo~ok(a + at .g(k)  -1 - 0 )  exists and is equal to A. 
(iv) Denote 

f x  a +ak "glk)- 1 ek(x) = [q~k(U) -- Ckk(a + a~. g ( k ) -  t _ 0)] dx 

for  k > 1 and x e [ b , a  + a , 'g(k) -a] .  Suppose that for  each 81 > 0 there exists 
a sufficiently small P(el), 0 < p(el) < (a - b)/2 such that for  each k >__ 1 and all x 
satisfying 0 < (a + ak.g(k) -1) -- x < p(el) we have 

I  k(x) I 8, Ix - (a + a , .  g ( k ) - ~ ) l "  
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(ii) h(x )eC2(a  - 6 < x < a + tl), h'(a) = O, h"(a) < O, h(x) is nondecreasing 

f o r  x e [p, a] and nonincreasing for x e [a, b]. 
(iii) {Ok} ~ A*. 

(iv) {g(k)} satisfies condition (iv) of  Theorem 1.3. 
(v) T h e  func t ions  c~k(u)(k >= 1) are defined on p < x < b and f o r  some f in i te  

M we have 

fpb I~k(u)]du M for k 1. < >= 

(vi) The  point  a + ak ' g ( k )  - l  is a Lebesgue point  o f  q~k(U) and 

l imk_~(a + ak 'g (k )_6)  exists and is equal  to A. 

(vii) Deno te 

f; ak(X)==- [~k(U) -- ~k(a + a k • g(a)- l )]  du 
+ a k "  g l k ) -  1 

f o r  k > 1 and p <_ x < b. Suppose that f o r  each ~l > 0 there exists  a suf f icient ly  

smal l  P(~l), 0 < p(el)  < Min ((a - p)/2, (b - a)/2) such that f o r  k > 1 and all  x 

sat is fy ing] a + Ok" g(k)  -1  -- x I < p(el) we have I  k(x) 1 <= Ix - (a + ok. g(k)-  * I 
Then  

J f; (! 1.3) lira - kh"(a) -g(k)h(.) dPk(X) e ~(k)h(~) dx  = A .  

Proof. The same proof  as that of  Theorem 2.3 because I a k l  <= C " k 1/2 . 

TrmOREM 4.3. Suppose conditions (i), (ii), (iii) and (iv) of  Theorem 2.3 are 

satisfied. 

Then 

(12.3) lim - kh"(a) e -h'(a)A2]2 e -gt*)*t") d?k(x). 
k'-*oo J a +  ak  " g ( k ) -  1 

• e g(*)htx)" (x -- a ) d x  = A.  

Proof. The argument used to prove Theorem 1.3 yields also 

k f b  - 1 eh,,ta);t2/2 (13.3) lira 3a (X -- a) exp [g(k) (h(x)  - h(a))] dx = h"(a---)- 
k ~ o o  + a k  " g(k) - 1  

By (13.3), assumption (iii) of  Theorem 2.3, and the arguments used in proving 
Theorem 2.3, it follows that it is enough to show that 

Ik ==- k [~bk(X) -- ~k(a + ak" g(k)  - 1 + O)](x - a)" 
+ ak"  g ( k ) -  1 

• e x p [ g ( k ) ( h ( x )  - h (a) ) ]dx  = o(1) as k-~ ~ .  
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Denote I k =-Ik~ + Ik~ where Ik,  and Ik~ are respectively the integrals on 
[a + ak " g ( k ) - l , a  + ~/~] and [a + r/~,b],ff, > 0. The argument used in the proof  
of Theorem 2.3 yields, since I C~k(X) -- ~k( a + ak" g ( k ) - ~  + 0) 11 a I is L 
integrable on [a + ak " g ( k ) - ~ ,  b], that Ik~ = O(1), k "-* oo. Integration by parts 
gives 

Iki  = k a k ( x ) e x p [ g ( k ) ( h ( x ) -  h(a))] ( x -  a) ~+~' a+ak  " g ( k ) -  1 

-- k f ~ + ~  C tk (x )exp[g (k ) (h (x  ) - h ( a ) ) ] d x  
.I a-l'ak "g (k ) -  1 

-- k g ( k ) f  ~+~' % ( x ) h ' ( x ) ( x  - a ) e x p [ g ( k ) ( h ( x )  - h ( a ) ) ] d x  
J a + a k ' g ( k ) -  1 

~-- I k l l q - I k 1 2 + l k 1 3 ,  

where Ctk(X) is defined by condition (iv) of Theorem 2.3. Clearly I k l l  = O(1) as 
k --, oo. L e t  81 > O, P(el),  e > 0, r h ,  61 and ~(x) be the same as in the proof  of 
Theorem 2.3, then for x ~ [a + a k • g ( k ) -  1, a + t/x], since h"(a) + 8 >= h"(~(x)),  

(14.3) e x p [ g ( k ) ( h ( x ) -  h(a))] = exp g ( k ) h " ( ~ ( x ) ) .  ~ 

 oxp [ + 
Let - L =- h"(a) + e. Then by (14.3) 

f a+l/l IIk12 [ < k81 (x  - a - a k • g(k) -1)  E g(k)L(x-a)2/2 d x  <= M181 . 
d a + a k  " g ( k ) -  1 

Le t  h"(a) - ~ =-- - B,  then, since - B < h"(~) < - L we have by (14.3) 

[Ik13 [ < k g ( k ) 8 1 f  a+~l (x  - a - ak " g ( k ) - l ) B ( x  -- a)2 e-g(~)'(~-°m2 dx 
J a+ak  • g ( k ) -  1 

The substitution u = x/g(k)L/2 in the last integral together with the inequality 
I x - a - ak" g ( k )  - 11 ~ [ x - a I + I ak ]" g ( k ) - t  and the fact lira k -  ~o k - t  g ( k )  = 1 
gives 

fo 1I 131 uae-'2du+Maexla~lg(k) -112 
co 

_-< M481. 

tt 2 e -  U2du 

COROLLARY 4.3. S u p p o s e  condi t ions  (i), (ii), (iii) a n d  (iv) o f  C o r o l l a r y  2.3 are  

satisfied. 
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Then 

Proof. The same proof as that of Theorem 4.3. 

$4. Proof of the theorems of $2. In the proof of Theorem 1.2 we shall use 
the following result. 

LEMMA 1.4. Suppose that the Laplace transform of 4 (u)  exists and that 
a ,  = o(k) as k -t co. Then 

kk+l m 

lim - k 
+ k !  S,+, e-kzz'+( z - r )  k + n, ~ Z = O  

Proof. We shall prove (2,.4) only. The proof of (1.4) is similar. For real c and 
t > 0 let a(z)  = a(z, c, t )  = f: e-'"4(utj d21. For any fixed t > 0 there exist constants 
c = c(t) and M = M(t)  such that 

(3.4) 

Define 

Hence, by (3.4) 

(4.4) 

I a(z)  5 M - M ( t )  for z 2 0. 

Integration by parts in (2.4) yields 

The maximum of u . exp [ - ( k  - c(k/( k + a,) ) )  u ]  is at u = (1 - (c/  ( k  + a,)))- I .  
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Therefore, by (4.4), 
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k ~i)~ k k +, 

for k > ko. The sequence { k / ( k  + ak)} is bounded, and the argument used in 
proving Theorem 3a on page281 of Widder [7] (with t = 1, c - - 0  there) yields 
(2.4). Q .E .D .  

Proof of Theorem 1.2. Case (i). Let t > 0 and suppose that qS(t + 0) exist. 

1 k a k _(k+ak)u] t (5.4) Lk.,.ak[.[(x)] = ~ - -  e • u~/p(u)du 

kk+l -~ {.(k+,,k)!k [.1+~ ~oo 
- k, { f '  + Jl_~ +J(k+~)/k J r + , }  e-iZzk~ b +  \ z K . e a k t / d z  

=-- l_kl + lk 2 + Ik3 + lk4, 

{ak} ~ A(2),  and so a~ = o(k), k --* oo. By Lemma 1.4 we have 

(6.4) lim Ikl = lim I~4 = 0. 
k " *  co k ~ o o  

In order to find the value of limk_.®Ika take in Theorem 2.3 h(z)  = logz - z, 
g ( k ) = k ,  q S i ( z ) = d p ( z ( k / ( k + a k )  ) . t )  ( k > l ) ,  a = l  and b = l + f .  It can be 
verified that the functions ~bk(z) satisfy conditions (ii), (iii) and(iv) of Theorem 2.3. 
Hence, by Theorem 2.3 and Stirling's formula, we get 

(7.4) lim Ika = (1 -- N(2))qb (t + 0). 
k--~ oo 

In the same way, using Corollary 2.3 instead of Theorem 2.3, we get 

(8.4) lim Ik2 = N(2) q5 (t - 0) . 
k---~ co 

Combining (7.4) and (8.4) we obtain the proof for case (i) of Theorem 1.2. 

Proof of Theorem 1.2. Case (v); The proof of this case is the same as that of 
case (i) but here we use Theorem 3.3 instead of Theorem 2.3. 

Proof of Theorem 1.2. Case (ii), Here {ak}6B +. Let t > O  and suppose 
~b(t - ) exists. For A > 0 and a sequence {bk} 6 A(A) we have, for k > ko, 

kk+l fl(k+,,k)/k_k~zl, dz kk+t f(k+bk)/k = " e - kZzkdz. = - -  e > k! j ~_~ 1 >  k! _~ 

Therefore by (8.4), with the function ~b(t)~ l, we have 

ak " . k e 
1 >  l i m f t ~ ;  - k Z z k d z > N ( 2 )  

k--* co 
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Now lim~to o N(2) = 1, therefore 

(9.4) lim f(k+ak)/ke--kzzkdz=. 1 .  
k - - ~  ,d I --di 

For a given ~ > 0 there exists ~5 -= tS(e), 0 < 6 < 1 and a constant kl  - k l (e l ,  {ak}) 

such that 

(10.4) tiP( ) ) k-I'ak k tz - ~ b ( t -  < t  for 1 - t S < z < ~  and k > k  1. 
a k  = 

Let Ikj(1 < i < 4) be the same as in (5.4). By (10.4) we have 

lim I Ik2 - - )1 ____ lim ~ dp I k + a k ] - dp(t - ) ] e-kZzkdz < t 
k ~ a o  • 

Letting e ~ 0 we get 
lira lk2 = O(t -- ) .  

(11.4) k~oo 

The argument used in obtaining (4.4) shows that for fixed t > 0 there exist 
constants c = c(t) and MI (t) such that 

( 1 2 . 4 )  lilk(z)l------I k+okfxp--C -- -- kU C~ - - ~ - -  ak du l < M 

for k > ko • 

The only maximum of zkexp { -- k(1 - (c / (k  + ak)))Z } is at 

z .~- (k -t- ak)" ( k +  a k - c ) -  1. 

Also, limk-.~ ak = + OO, since {ak} ~ B +, and so 

(13.4) k + a k ]£ + ak for k > kl > ko. 
~ > k + a k - - C  = = 

Integrating by parts the integral defining Ik3 in (5.4) we get 

kk+t e -kO+'~ ' ( l+3)k i l k ( l+  6)exp { k ~ a k C ( 1  + 6 ) }  Ik3 = k! 

k! | ilk(Z) d z k exp k 1 k + a k 
d(k + ak)/k 

The argument used in proving Lemma 1.4 yields now by (12.4) and (13.4) 

(14.4) lim ]k3 = 0 . 

k ~ o o  
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By Lemma 1.4 we have lim k-,oo Ikl = lim k-~ ® Ik2 = 0. Combining the last result 
with (11.4) and (14.4) we get the proof of case (ii) of Theorem 1.2. 

Proof of Theorem. 1.2. Case (iii). q-he preof  of this case is similar to the proof 
of case (ii) of Theorem 1.2. 

Proof of Theorem 1.2. Case (iv). It is known (and it follows from (9.4) too) 
that, for 0 < fi < 1, 

k k+l I t  ";~ lim ~ e-k"zkdz = 1. 

Since ¢(u) is continuous for u = t > 0, therefore for each e > 0 here is a t~ ~ 6(e), 
0 < 6 < 1. such that 

,z)  for 1 

Let I~j (0 < j < 4) be defined as in (5.4). Then 

li--~ Ilk2 + Ik3 -- ¢( t )  l 
k"* oo 

< lim e-kZz k ¢ -~-------'tz - - ¢ ( t )  d z<e .  k-'~ --~T" a~-~ + ak -- 

Letting e~0 we get l i m k ~ o { I ~ 2 + I k a } = ¢ ( t ) .  By Lemma 
l imk.~  lkt = limk-.oolk4 = 0. This completes the proof of the 
Theorem 1.2. 

1.4 we have 
case (iv) of 

Proof of Theorem 2.2. By supposition ~(0) = 0. It is known (Widder [7]) 
that if f (x) is the Laplace-Stieltjes transform of a(t) then .](x)/x is the Laplace 
transform of a(t) .  If  f (x) is the Laplace-Stieltjes transform of a(t)  them (See 
[7], p. 294), 

Substituting x = (k + ak)/t we get by (7.2) and (8.2) 

The proof follows now from Theorem 1.2 since ~.(0)= 0, f ( x ) / x  is the Laplace 
transform of a(t) and for each t > 0 ct(t +)exists,  therefore ~(t + 0) exists and 
respectively ~(t ___ 0) = ~(t +).  Q.E.D. 
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Proof of Theorem 3.2. The argument used by Widder (see [7] p. 291-) yields 
f o r 0 < r < t  

Y/ (15.4) Jr,t ,k ~ Lk,u.ak [jr(S)] du 

k+ak(k~a----~k) 
- J° ~ e -(k+°")y/' yk-lot(y)dy f 

-k! f o e- , k+ak l~ l ryk -  lct(y)dy =_ Jk, t  - -  J k,r 

Now, Theorem 1.2 yields for a fixed t > 0 (because if {ok} belongs to any one 
of  the classes A(2), B ± and B then {ak + 1} belongs to the same class and (k + a~)/k 
(k + ak)/k ~ 1 as k ---, oo) 

f N(2)ct(t - ) + (1 - N(2))0t(t + ) if {ak} eA(2) 
/ 

(16.4) lim JR., = 1. ct(t -- ) if {ak} ~ B + 
k-, ~o [ ~t(t + ) i f  {ak} E B -  

L e(t) if ct(t + )  = ~t(t - ) and {ak} E B 

(17.4) Jk,  k + a k C t ( 0 + ) k + a k ( ~ - - ~ )  k fo ~ = - -  e-  (~ + ok)y/, 
k k! 

. y ~ -  1 [ e ( y )  _ e ( 0  + )] dy k ---, oo, 

Now the argument used in [7] at the foot of  page 291 and the top of  292 yields 

k + a k  
(18.4) lim Jk ,  = at(0 + ) • 

r,o " k 

I f  {ak} belongs to any one of  the classes A(2), B + and B then (k + ak ) /k~  I. Hence 
by (18.4) 

(19 .4 )  lira lim Jk ,  = ~(0  + ) 
k-+oo r~O ' 

The proof  follows now by combining (15.4), (16.4) and (19.4). 

Proof of Theorem 4.2. For a fixed t > 0 and {ak} ~ A(2), denote 

Ik ~- e a2/2 X/'2nT- 1)k+ ~-. ( -  , { ( k + a a  

By Theorem 1.2 Case (i) we get 

l i m ~ ( ~ - ~ ) l ' f ( k ) (  k + a k  k-.~ ---7--) =0.  
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Comparing the definition of Ik and the result of our theorem we see that in order 
to prove our theorem it is enough to show that 

(20.4) lim Ik = ~(t + O) -- ~b(t -- 0). 
k " *  o0 

We have 

(21.4) l k=  ~ / 2  X/k2rC--k ( k  + _T_ y fo~ { _ a  k k u k q _  1 (  ~ k +  a k ) uk+l} . 

kk+ 2 
. e - ~ + , ~ . , 4 ( u l d u  = e"~/~ , j ~ , o ~  _ _ .  

k! k +  a k 

[ tkz 
e - k ~ z k ( z -  1)q~ i dz 

\ k +  ak ] 

Ik, 1 q- Ik, 2 q-lk,3 + lk,4. 
The arguments used in proving Lemma 1.4 yield here 

(22.4) lira I k l  = lim lk4 = 0. 
k'-*  oo k ~ c o  

In order to estimate Ik, 3 we substitute in Theorem 4.3 a = 1, b = 1 + 6, 
h(z) = - z + logz, g(k) -- k and q~k(z) -- ~( tkz / (  k + ak)) and get byTheorem 4.3 

(23.4) lim Ika = q~(t + 0). 
k---~ ou 

In the same way, but using Corollary 4.3 instead of Theorem 4.3 we get 

(24.4) lira lk2 = -- qb(t -- 0). 

Combining (21.4), (22.4), (23.4)and (24.4) we get (20.4)and this completes the 
proof of our theorem. 

Proof of Theorem 5.2. For a fixed t > 0 and {ak} ~ A().) denote 

k + a~ k ( -  1) k ~, ( k + a~] 
lk =-- eZ212~2-~ ( - - - t - - ) - - - k T f  , t ] 

eZ2f2 x /2-~  ( k  + ak]kf~e_tk~_,~.,ukda(t) 
= k~ \ - - - - i - - ] j o  

'~---- eZ2/2 X/~k, \~---,(kq- ak) kdOf°° e -(k+akI"/t(kuk-l--(~)Uk)~t(u)du 

= k! kk+l e-k~'z~'-l(1 -- z)~ \ k  + a~] " 

The argument used in proving Theorem 4.2, but taking here (1 / z )a (k z t / ( k  + ak) ) 
instead of d?(kzt/(k + ak)) there completes the proof. 
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Added in proof. Theorem 2 of the paper by L. C. Hsu "Generalized Stieltjes- 
Post Inversion formula for Integral transforms involving a parameter," Amer. J. 
Math., 73 (1951), 199-210, is Pollard's Theorem 1.1 of [4]. As we have shown 
in §2 there is an incorrect step in Pollard's proof. There is also an incorrect step 
in Hsu's proof of his Lemma 2 which is used in proving his Theorem 2. Hsu 
proves on page 204 that if a sequence {x.} of Lebesgue's points of a function 
f(x) converges to a Lebesgue's point x of the same function then lim.-,oof(x,) = f(x) 
The following example shows that this is not true. Define f(x) in [ -1 ,¼]  by 
f(x)=O for - l < x < O ,  f ( x ) = l  for 4 - " - 4 - " / 2 n < x < 4 - "  (n>=l) and 
f ( x ) = 0  in all remaining points of [ -1 ,¼] .  The points x , = 4 - " - 4 - ( " + ~ ) / n  
and x = 0 for f(x). = 1, f(0) = 0 are Lebesgue's points of f(x). But x. --, 0 and 

f (x , ) - -*  1 v~ 0 = f (O).  
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