REAL INVERSION AND JUMP FORMULAE FOR
THE LAPLACE TRANSFORM. PART 1.

BY
Z. DITZIAN! AND A. JAKIMOVSKI2

ABSTRACT

Generalizations of the Laplace asymptotic method are obtained and real
inversion formulae of the Post-Widder type for the Laplace transform are
generalized.

§1. Introduction. In §2 of this paper we shall obtain generalizations of what
are known as real inversion and jump formulae of the Post-Widder type for the
Laplace transform. From our generalized inversion formula and certain heuristic
considerations we shall obtain some new jump formulae.

Generalizations of the Laplace asymptotic method necessary for proving the
results of §2 are stated and proved in §3.

§2. Generalization of Post-Widder inversion and jump formula. Here the
Laplace transform f(s) of the function ¢(¢) is defined by

© R
(1.2) f(&)= f e P()dt =lim e “P(t)dt
[ R-x0dJ0
where ¢(f) € L,(0,R) for each R > 0 and the right hand side is supposed conver-
gent for some finite complex s.
The Laplace-Stieltjes transform of the function «(t) is defined by

@ R
2.2) f(s) =f e “do(t) = lim e "da(t)

(4] R=2w0dJ0
where o(t) is of bounded variation in the interval [0, R] for each R > 0, «(0) =0,
a(t) = 1/2(eft +) + a(t —)) and the right hand side of (2.2) is supposed convergent
for some finite complex s.
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86 Z. DITZIAN AND A. JAKIMOVSKI [June
Here ¢(x t) are defined by
(3.2) lim ¢(x + h)= ¢(x £)

h=0
if these limits exist.
¢(x + 0) will denote the numbers for which

h
@.2) f [6(x £ y) — $(x + 0)]dy = o(h) as h |0

if such numbers exist. If ¢(x + 0) = ¢(x — 0) then x is a Lebesgue point of ¢(u).

Post [5] obtained a real inversion formula. Widder [6] and also Feller [2],
Dubourdieu [1], and especially Pollard ([3] and [4]) generalized Post’s result.
The final result obtained by Pollard is the following (see [5], Theorem 1.1, second

part):

THEOREM A. Suppose f(s) is a Laplace transform and both ¢(t & 0) exist;

let {a;}, k=1, be any sequence satisfying a,=o(k"?), k— o0; then
k k+1
62 lim D (ﬁtﬂ) f<k)( _"_ﬂk_) = Lo+ 0)+ -0
kow  K! t t 2

Pollard ([5], Theorem 1.1) stated that if in addition to the hypotheses of
Theorem A we assume ¢(f + 0) = ¢(t — 0),then (5.2) is true for any sequence
{a,} satisfying a,=o(k), k > 0. We could not prove this last result and shall show
by an example that one of the main steps in his proof is incorrect.

The step in question (see [5] top of page 449) is that, for 0 <d <1 and
0, = o(k), k - oo,

(52.2) ] fk U Pwdu ‘ < j " pu)du

{(k+0k) 0

1 ©
| f Pk(u)du' < f P(w)du
X/ (k +05) 1+6

_(k+ 0" erau k-1 _ _k+86,
Pk(u)—we " (l-u) |1 e B

We shall show that these two inequalities are not true if, for example,
Jk =0(), k- .
For k = k, (since 6, = o(k)) we have

0<(1—u)(1—— k+ 0 ul) 1~ (1+k+9")u+k+0k ut

and

where

k k ik
<14+ 3u+3u2

<6, for0susl-o0<l1.
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Hence, for k = kq,

1-3 kt1 »1-6
f Pk(u)du é 6 (—}%l:-—e;;_'—j e—(k'f'ek)uuk'ldu
0 - b

The integrand in the last integral is increasing from u = 0 to

yo k-l
T k46,

Therefore for k> k; = kg

(=1 as k- o).

-8 k+0)% _
< - k ( K (1=8)(k+oyg)
J;) P (w)du < 6(1 — ) O e
(and by Stirling’s formula)
1
~ Aexp{ — klog 7=+ (k+ Dlog(k +6) = (1 = &)(k +6)

- (k—%) logk-l-k:

1
= Aexp{——k[]og 1_5—5+o(1)] +—;—logk}

(and since 6 < logl/(1 —9) for0 < < 1)

-0 as k— o0.

Hence
1-3
(5b.2) lim P (1)du=0
k=>w JO
Now
7‘2_ fom tH00uFY o=t 0u =t (1 _k -l]; Oy " )
Hence

1 k4 0.yt
(5c.2) f Pu)du = g__.j'_k"‘)_f (1 —u) d_d_ {uke—(k+0k)u} du
k/(k+6x) . K/ (k +0%) u

uke —(k+05)u du

kke'—k (k + ok)k+1 1
i T ey fk

/(k+8:)
k46
— Lo, + l’f e dv.
J 2nk k
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We have
k+0; . . 1 sl .
- -v < =4y =
'k!J; v'e dvl:_k!ove dv=1.

If now / k = o(8;) then |6,/ \/k| — o0 as k> o0 and

(5d.2) lim l f Py(w)du [ =
k= o k/(k+0x)
Relations (5b.2) and (5d.2) are in contradiction with (5a.2). Similarly it can be
shown that the second inequality used by Pollard is not true if \/Tc = 0(6,),k — .
Qur first result is a generalization of Theorem A.
In order to state our theorem we need the following notation.
a) A sequence {a,}, k = 1, belongs to class A(1) for some real 4 if

a, — AJk = o(\Jk),k— .

b) A sequence {a,} belongs to class B if a, = o(k), k - co.

c) A sequence {a,} belongs respectively to class B*(B™) if {a} € B,
| @] k™% = o0 as k— co and for some k 2 ko, a; > 0(a; < 0).

d) A sequence {a;} belongs to class A* if a, = O(/k) as k — .

Denote by N(4) the normal distribution function,

A
(6.2) N)= N f e "y,

For k=1,2,...,t>0 and a given sequence {a,} the operator L, , . [f(x)] is
defined by

(7.2) Le.a[f(s)] = l)" (_"_"t'_%)kﬂf(k)(lc—ita—k).

THEOREM 1.2. Suppose f(s) is the Laplace transform of ¢(u). For fixed t > 0,
() If {o} € A(4) and both ¢(t +0) exist then

lim Ly, [f(x)] = N(D)é(t - 0) + (1 — N()g(t + 0).

k—=>w

(i) If {a} e B+ and ¢(t —) exists then
’}1:1010 Lyt [f)] = ¢t —).

(iii) If {a,} € B~ and ¢(t + ) exists then
lim Ly ;0 [f(x)] = &(t +).

k=
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(iv) If {a,} € B and ¢$(u) is continuous at a point t >0 then

im Ly 0 [f()] = ¢(0).

k-
(v) If {a,} eA* and both ¢(t + 0) exist and ¢(t + 0) = ¢(t — 0), then
tim L, , [f(x)]=¢( +0).

k-

We shall obtain the following two analogous results for the Laplace-Stieltjes
transform. We begin by defining the operator S ;
Given t > 0 and a sequence {a;}, k = 1,2,..., we define

@ k
6D Sualf1=f@+ (=0 [ e )L

k+a)ft

THeOREM 2.2. Suppose f(s) is the Laplace-Stieltjes transform of oft). Then
{ N(Da(t =) + (1 — Nt +) if {a} € A(A)

lim Sy [f0)] = {07 A
k=<0 a(t +) if {a,} B~
a(t) if (t—)=a(t+) and {a;}€B.

TuEOREM 3.2. Iff(s) is the Laplace-Stieltjes transform of a(u), then

(Nt =) + (1 — NQAa(t +)—a(0+)if {a;} € A(A)
a(t—)—a(0+) if {a,}eB”
ot +)—a0+) if {a,} e B~
o(t) — a(0+) if(t—)=a(t+) and {a,}eB

If we choose in the last three theorems a, = o(k'/?) k— oo we get Pollard’s
results [5].

Theorems 1.2, 2.2 and 3.2 will be proved in §4 by using improvements of the
Laplace asymptotic method which are stated and proved in §3. These improve-
ments are stated in a slightly more general form than is needed for proving the
results of this paper. The more general form will be needed in a later paper.

From Theorems 1.2, 2.2 and 3.2 we can deduce immediately the following
trivial jump formulae.

lim 'Lk.u,ak[f(s)]du =
0

k— ©

CoROLLARY 1.2. Suppose f(s) is the Laplace transform of ¢(u). If for some
t > 0 both ¢(ti+ 0) exist and {a,} € A(A), {b;} € A(2;) (A1 # 4,), then

1

N =NGD lim {Ly,,, [f(9)] = Lt o [/(9]} = ¢(t + 0) — ¢(t — 0).

k-
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COROLLARY 2.2. Suppose f(s) is the Laplace transform of ¢(u). If for some
t> 0 both ¢(t + ) exist and {a,} € B ¥, {b;} € B, then

’lcl:n L s Lf O] = Ly o [f()]} = (2 +) — (1 —).

COROLLARY 3.2. Suppose f(s) is the Laplace-Stieltjes transform of «(u). For
fixed t > 0 we have

() If {a.} € A(A) and {b.} € A(,) (A, # 2,), then

1 1 1 (k+ax)/t uk @+ 1) p
im (—1 u* ) — o
(@) N(2) — NQi,) ,“f;( ) f(mkm it (Wdu = oft +)— ot —)
and

®  Fay—way I [, G~ Lena ]

=a(t+)—oft—).
(ii) If {a,}eB* and {b,} € B, then
© :im {Sken )] = Sk a [FOO} =t +) — a(t =)

and

@ lim ;{Lk,u,,,k[f(xn—Lk,u,ak[f(x)J}du=«(t+>—a(z—>.

k=

The following heuristic considerations lead to a new non-trivial jump formula.
Choosein Corollary 1.2, b, — a;, = (1, — 4,) \/k

. 1 .
ot +0) — ¢(t — 0) i}}ﬁl mg& {Lip [f()] - Ly s o Lf(X)]}

(changing formally the order of the limits)

=lim lim AI_A'Z . 1 .(_l)k.{(k+bk)k+1f(k)(k+bk)
koo vz NAD)—N@z) A4 —24, k!

- () (22)) -

—— 2275, 1 — 1)k k + b, \**! k+b
=lim \/2nk €""/*lim - ( k') { ( ; k) F® ( k)
k- 2142 (ﬂ,l —1.2)\/16 :

- (bt ~/E)"“f(k)(k+b,,+(z1—xz)\/1€) :

t t
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e S () (52

k- w t t

1 k+bk k+1 (k+l) k+bk
o7 () (5 )

This suggests Theorem 4.2, which we shall prove formally below in §4.

THEOREM 4.2. Suppose f(s) is the Laplace transform of ¢(u) and that for some
1> 0, both ¢(t +0) exist. Let {a;} € A(1), and 0, = o(/ k), k— 0. Then

- \/Ez?(—-l)" ‘ (k+ak) k+0kf(k)(k+a,,)

. k! 1 1

+ L (’HT“")Mf"‘“’ (-’f—“}-"—) } — §(t+0— p(t = 0).

Choosingin Theorem 4.2 4 =0, a, = 0 and 6, = 0 for k > 1we get

COROLLARY 4.2. Suppose f(s) is the Laplace transform of ¢(u).If for some
t > 0 both ¢(t +0) exist, then

2k RNTU T (K L+ (K
o TR W N P e A
= ¢(t + 0) — ¢(t — 0).
A formal computation similar to that used in obtaining Theorem 4.2 yields

THEOREM 5.2. Suppose f(s) is the Laplace-Stieltjes transform of a(t) and let

{a,} € A(A). Then
. k+1 12/2 \/27Tk k+ Qg ) k + a;
fim (e g () s (2
=a(t+)—a(t—)

Choosing in Theorem 5.2 A =0, a, =0 for k = 1 we obtain the Widder jump
formula (see [7] p. 298).

In Theorems 4.2 and 5.2 {a,} € A(4), therefore a, = O(/ k) (k > ). Hence

k+a, - K log (1 + (ax/k)) ax —1/2(a2/k) ag—(42/2)
— ) =¢ ~ e W~ e (k > ).

Therefore we may state the results of Theorem 4.2 and of Theorem 5.2 in, res-
pectively, the following two equivalent forms:

. 1 . k+a k+a k+a
lim (_}_)k-{-leki— {(k'l'ek)f(k)( k) + - kf(k+1) ( k) }

k=0 t t

=¢(t+0)— ¢(t—0)
lim e ¥t ( —-—:—)"f"" (k—+la—")=a(t+)—fx(t—).

k- w
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§3. The Laplace asymptotic method. In this section we shall obtain and
prove some results which are the basis for the proof of our theorems in §2 and in
part 2 of this paper. The results of this section are generalizations of the classic
Laplace asymptotic method.

THeorReM 1.3. Let (i) a, b, n, 6 and A be real numbers satisfying a<b, 6 >0
and0<n<b—a.

(i) h(x)eC2(a—d6=x=a-+mn), h'(a) =0, h"(a) <0 and h(x) is non in-
creasingina s x < b.

(iii) {a,} € A(4).

(iv) {g(k)}, k=1, is a sequence of real numbers satisfying g(k) ~ k,k— .
Then

- o L
(1.3) lLim \/jf— e FBMD [ (a) e* WD gy =1 ~ N(A /=h"(a))
2n atagglk)~1

k=
Proof.
~ kh"(a)

2n ata gkt

T ( petm b
= \/——ﬁl—ia—) “‘ +J. } ( )dx=I.+J, (say).
2n atayrgky—1 atn

By the arguments used in Widder [7] p. 278 we see that, forany 0 <7, <n,
2.3) lim J, =0

k-

By (ii), for xe[a — d,a + 1,], we have h(x) — h(a) = [(x — a)2/2] h"({(x)) where
E(x) e[x,a]if x < a or &(x) e [a,x] if x > a. Now

O e I LT

atag* gk)—1

exp[g(k)(h(x) — h(a))]dx

For any fixed & satisfying — h’(a) > ¢ > 0 we can define n,,0 <%, <7, and Jy,
0 < &, < & so that, for xe[a — d,,a + ],

(3.3) h'(a)— e < H'(x) < h'(a) +&.

Denote, respectively,

I _\/___hfﬁ“_) o exp [g(k)(h”(a)+s) x a)]

atare gky~1

\/g(k)\/ h”}(l ()a-)F - (N(1, g0 /= (W(a) £ YOED)

~ N(ag(k) ™1 |/ = (W (@) F 8)))
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N(u) is a continuous function, and hence

4.3) lim IE= \/ 7%‘%—8 (1 = NG = (@) £ o).

By (2.3) and the definitions of Ifand I,, I; <I, £ I, . Hence by (4.3) and since
¢ > 0 is arbitrary we get

(5.3) lim I, =1 — N(A/ = h"(a))
k-
Our result follows from (2.3) and (5.3) combined. Q.E.D.

CoroLLARY 1.3. Let (i) a, b, 7, 8 and A be real numbers satisfyinga <b, 6 >0
and0<n<b-—a.

(i) (x)eCoa—n<x=Za+3d), (a)=0, kK'(a) <0 and h(x) is nonde-
creasing inb< x < a.

@iii) {a,} and {g(k)} satisfy conditions (iii) and (iv) of Theorem 1.3.
Then

TP atarg(k)~ 1! -
(6.3) lim | ———I;}; @) e'g(")"(“)f e! W dx = N(A\/ — h"(a))
k- b

Proof. The proof follows from Theorem 1.3 by substituting x = — z.

THEOREM 2.3. Suppose (i) a, b, , 8, A, h(x), {a,} and {g(k)} satisfy conditions
(1), (ii), (iii) and (iv) of Theorem 1.3.

(ii) For the functions ¢,(u), k)=)1, defined on [a + a, g(k)™*,b] and for some
finite M we have

b
f | ()| du < M for k21
atag gik)-!
(i) lim ,_ , ¢ (a + a;. g(k)™* + 0) exists and is equal to A.
(iv) Denote

9= [ [0 - dulo + a0 +0)]d

for k=1 and xe[a + a,- g(k)™*,b]. Suppose that for each &, > 0 there exists
a sufficiently small p(g,), 0 < p(g,) < (b — a)/2, such that for each k=1 and
all x satisfying 0 < x —(a + a,-gk_¢) £ p(e,) we have

I“k(x)l = Sllx —(a+ akg(k)_l)l .
Then

. TRR@ —puna [ ° .
(03 fim [ S om0 © g mertien gy
—®© atar g(k)

= AQ1- N —h"(a)).
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Proof. In order to prove our theorem it is enough by (1.3) to show that

_ b
@3 Jm VB[ (409~ Alexpe()(h(9 — ha)]dx =
(1.3) yields by condition (iii) that
b
(9.3) lim \/Ej [pla+ a,-g)™t +0)— 4] -
k> atarg(k)~?!

- exp [g(k) (h(x) — h(a))]dx = 0.
In order to prove (8.3) it is enough by (9.3) to show that
b
LeVE[  [40- da+ag® 0]
- exp [g(k)(h(x) — h(a))]dx = o(1) as k- co.

Denote Iy =1, ; + I , where I, ; and I, , are respectively the integrals on the
intervals [a + a,- g(k)"*,a +n,], [a + 11, b]. Now by (ii) for each fixed 5, > 0
b

|Ik,2 I hS \/TC exp [g(k)(h(a + n,) — h(a))] |¢k(u) — pla + a g(k) T+ O)l du

atn,

= o(1) (k— ).
Integration by parts yields
Iii = k exp[g(l) (h(x) — h(@)u(x) it so- —
- a+ipy
- Jk g(k) R o ()’ (x)exp[g(k) (h(x) — h(a))]dx = Liyy + L2
a+ax-gk)=1

By (ii) and the fact o, (a + a; - g(k)~') = 0 we have I,,, = o(1), k = co. For a given
g, let p be that existing by (iv); let #, be the same as that in the proof of Theorem
1.3 and suppose also 7, < p.

[z < k%00 [ ]| W6 expLath (b — ha)]
(by ()

< e,k g(k) '(k) (x = (a+a,8(0) )| HE@)(x — a)|-
atax'gk)-1
oxp | gCm(ece) “ 50 ax
<ok g(=h@+d|  |x—a]lx—a—-a- g0

atar gk)~1

 exp [g(k)(h”(a) + e)%] dx
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(and for M, = — h"(a) + ¢)

a+ny

< e,k 2 g(l)M, em[ammmﬂ+w

atagglk)—1

(x —;a)i] .

JGx = a2+ |x — al|a;| g(k) ' Jdx
(and by the substitution u = ./ — (g(k)/2)(h"(a) + &) (x—a) together with

|ai| < ck'* < ¢, g(k)'?)

o]

@0
Mgslf e " u2du + Mg, f ue “du < e,M,

2} v

A

By letting &, |0 we get {,;, = o(1) as k — 0. Q.E.D.

COROLLARY 2.3. Suppose (i) a, b, 11, 8, 4, h(x), {a,} and {g(k)} satisfy conditions
(i), (id), (iii) and (iv) of Corollary 1.3.

(ii) For the functions ¢,(u) defined on [b,a + a,-g(k)™'] and for some finite
M we have

atag-gk)—1
f | $u(x)|dx < M for k= 1.
b

(iii) lim,_, , ¢y(a + a; - g(k)™' — 0) exists and is equal to A.
(iv) Denote

avag gik)~1
%m=f [fu(u) — dula + a,.g(k)™" — 0)]dx

for k=1 and xe[b,a + a,-g(k) ~']. Suppose that for each ¢, > O there exists
a sufficiently small p(g,), 0 < p(g,) < (a — b)/2 such that for each k = 1 and all x
satisfying 0 < (a + a,-g(k)™ ") — x £ p(e;) we have

|| S i [x = (a+ ap-g()™ .
Then

— ” atax-gk)~t
(10.3) lim \/——If)in(ﬁ). PRARLCY J‘ $i(x) . F DD gy

k-0 b
=AN(A{ — h'(a)).
Proof. The same proof as that of Theorem 2.3

THeOREM 3.3. Suppose that (i) a, b, p, n and § are real numbers satisfying
p<a<b 0<np<b—a O<d<a-—p.
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(i) A(x)eCa—6=<x=Za+n), Wa)=0, h'(a) <0, h(x) is nondecreasing
for x €[ p,a] and nonincreasing for x e {a, b].

(iii) {a,} € A*.

(iv) {g(k)} satisfies condition(iv) of Theorem 1.3.

(v) The functions ¢,(u)(k = 1) are defined on p < x < b and for some finite
M we have

b
f | $p() | du < M for k=1.
P

(vi) The point a+a,-glk)™" is a Lebesgue point of ¢ (u) and
lim, _, , (a + a,- g(k)_¢) exists and is equal to A.
(vii) Denote

w= [T~ b+ e @ D]du

for k=1 and p < x £ b. Suppose that for each &, > 0 there exists a sufficiently
small p(e,), 0 < p(e,) < Min ((a — p)/2, (b — a)/2) such that for k 21 and all x
satisfying|a + a;- g(k)=* — x| £ p(e,) we have |(x)| < &; | x — (a + a, g(k)~ 1.
Then

TR b
(11.3) lim \/_%@ e-g(k)h(a)f ¢k(x)eg(k)h(x) dx=A.
p

Proof. The same proof as that of Theorem 2.3 because |a, | < ¢ - k'/%.

k=

THEOREM 4.3. Suppose conditions (i), (ii), (iii) and (iv) of Theorem 2.3 are
satisfied.

Then

b
(12'3) lim — kh”(a) e“h"(a))-Z/Z e'g(k)ﬁ(d)f ¢k(x)'
k- o atag gk)-1

c eEWR L (x — g)dx = A.

Proof. The argument used to prove Theorem 1.3 yields also
b - U4
(13.3) lim k (x — a)exp[g(k) (h(x) — h(a))]dx = —,,—1— @2
k> atag: g(k)~1 h"(a)
By (13.3), assumption (iii) of Theorem 2.3, and the arguments used in proving
Theorem 2.3, it follows that it is enough to show that

b
Ii=k vare g1 [¢u(x) — dula + ai - g™+ 0)J(x — a)

- exp[g(k)(h(x) — h(a))]dx = o(1) as k- 0.
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Denote I, =1I,, + I,, where I;, and I,, are respectively the integrals on
[a+a,-gk) ',a+n]and [a+n,b],n >0.The argument used in the proof
of Theorem 2.3 yields, since |@y(x)— dula+a;- gk) ™'+ 0)||x—a| is L
integrable on [a + a, - g(k) ~*, b], that I;, = o(1), k- co. Integration by parts
gives

I, = koy(x)exp[g(k)(h(x) — h(a))] (x — @) | J33! g+

—k f T @ exp[gk) () — h@)]dx

atag gk)-1

atn

— kg(k) a(x)h'(x)(x — a)exp [g(k) (h(x) — h(a))]dx

atag-gk)=1?
= Iiyy + Iig2 + Iiys,

where «(x) is defined by condition (iv) of Theorem 2.3. Clearly I,;, = o(1) as
k— co.Let &, >0, p(g), e>0, n,, 6; and &(x) be the same as in the proof of
Theorem 2.3, then for xe[a + a, - g(k)™!,a +1,], since h"(a) + &= h"(&(x)),

(14.3) exp[g(k)(h(x) — h(a))] = exp [ gk h(E(x)) (x —2 a)z]

< exp [ () (' (a) +6) & ‘2“’2] .

Let — L=h"(a) + ¢. Then by (14.3)

atny

|Ik12| = k31J‘ (x—a—a,-gk)y") EWTD2 gx < Mye, .

atay-gk)-1

Let h"(a) — ¢= — B, then, since — B < h"(¢) £ — L we have by (14.3)

a+1“
IIkISI é kg(k)le. (X —a—-a;- g(k)-l)B(x — a)Ze-g(k)L(x—a)ZIde

atap- gyt

The substitution u = \/ g(k)L/2 in the last integral together with the inequality
[x—a—-a, gk)™'|S|x—a|+]a,] - g(k)~* and the fact lim,_ . k' g(k) = 1
gives

[+

IIkISI = Mg J; w'e™du + M3y | aklg(k)_uzf u’e™"du

-0

=< M4€1 .

CoroLLARY 4.3. Suppose conditions (i), (ii), (iii) and (iv) of Corollary 2.3 are
satisfied.
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Then

- atax* gk)~!
(15.3) lim kh'(a) e (@312 g~ (h(@ f P(x)ef PO (x — agydx = 4.
b

A=

Proof. The same proof as that of Theorem 4.3 .

§4. Proof of the theorems of §2. In the proof of Theorem 1.2 we shall use
the following result.

LeMMA 1.4. Suppose that the Laplace transform of ¢(u) exists and that
ay = o(k) as k — co. Then

kk+1 1-3 krk k
(1.4 ;}irZTL e zq&(zk_i_gk—t)dz:()
» . kk+1 © P k
2 z =
2.4) klir: x J;+a e "z ( 2Ty akt) dz=10

Proof. We shall prove (2.4) only. The proof of (1.4) is similar. For real ¢ and
t>0let w(z) = a(z,c.t) = [ge”“P(ut)du. For any fixed ¢ > 0 there exist constants
¢ = ¢(t)and M = M(¢) such that

(3.4) Ia(z)! S M=M(1 for z =2 0.
Define

z
o (Z)E f e-C(k/(k+ﬂk))ll¢ ( u
* 148 k+

k t) du
ay

e “P(ut)du.

a k-f—ak fz(k/(k+ak))
(1+38) {k/(k+ax))

k
Hence, by (3.4)
(4.4) || S3M  (kZky), zZ20.
Integration by parts in (2.4) yields

kk+l © ke k k
Jk=!—l;!—£+ae Z¢ (zk—_‘_—z’—t)dz

k+1

k
— k — —_—
= o (w)u” exp { (k €% - )

kk+1 @ ) d . k
= Jso g feter | (kg ) o] Ja

The maximum of u®- exp[ — (k — c(k/(k + ap))u]isatu = (1—(c/(k+a))) "
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Therefore, by (4.4),

k 1
IJkl§6Mexp [(1+5)CF+~—a—] . {E—'e “-h”k(l +5)kkk+l}
P :

for k= ko. The sequence {k/(k + a,)} is bounded, and the argument used in
proving Theorem 3a on page281 of Widder [7] (with ¢ =1, ¢ = 0 there) yields
(2.9). Q.E.D.

Proof of Theorem 1.2. Case (i). Let ¢ > 0 and suppose that ¢(t 1 0) exist.

G Luanlf]= g <5

kk+1 1-8 (k+ax)ik 1+0 0 ok k
= — + + +f } e” ’z¢(z—~——-~t)dz
k! { J; fl—& f(kﬂk)/k 1+8 k +ay

= Iyt 1+ L+ 1y,

k1
) e ~kFault . ykb(w)du

{ay} € A(A), and so a, = o(k), k- o0. By Lemma 1.4 we have
6.4) fim I; = lim I, =Q.

k—+ w0 k= o0

In order to find the value of lim,. I,; take in Theorem 2.3 h(z) =logz — z,
glky=k, ¢2)=z(k/(k+a)) ) (k=1), a=1 and b=1+4. It can be
verified that the functions ¢,(z) satisfy conditions (ii), (iii) and(iv) of Theorem 2.3.
Hence, by Theorem 2.3 and Stirling’s formula, we get

(7.4) lim I,y = (1 — N()) $(t + 0).

ko
In the same way, using Corollary 2.3 instead of Theorem 2.3, we get

(8.4) lim I, = N(A)¢(t — 0) .

k=
Combining (7.4) and (8.4) we obtain the proof for case (i) of Theorem 1.2.

Proof of Theorem 1.2. Case (v); The proof of this case is the same as that of
case (i) but here we use Theorem 3.3 instead of Theorem 2.3.

Proof of Theorem 1.2. Case (ii); Here {a,}eB*. Let t>0 and suppose
¢(t — ) exists. For 4> 0 and a sequence {b,} € A(1) we have, for k = k,

1

(\

T e kb dz > — e %k gz,
: -5 kt Jy-s

kk+1 (k+ax)/k kk+1 (k+by)/k
J
Therefore by (8.4), with the function ¢(r)=1, we have

(k+ai)/k
1= lim f e % z%z > N(A).
1

k=0 -3
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Now lim ;;, N(2) = 1, therefore

(k+ax)ik
(9.4) lim e MRz = 1.
kow J1-8
For a given & > 0 there exists § = d(¢), 0 < d < 1 and a constant k, = k,(e;,{a,})
such that

k
k+ a;

k+ak

A and k= k,.

(10.4) |¢( tz)—¢(t—)i<sfor1—6<z<

Let I ;(1 £ j < 4) be the same as in (5.4). By (10.4) we have

KRt pletan)/k ktz
. - — < | -
lim [1,; — (¢ =) = Tim [ | (k+ak

) - (1 — )l e *kdz e

1-4

Letting £} 0 we get
(11.4) Jim Ty = 90t =).

The argument used in obtaining (4.4) shows that for fixed ¢ > 0 there exist
constants c¢=c(f) and M, (¢) such that

24 [8G)|=| j( exp{—ck_faku}d:(?_f—aktu)du!§M

k+ai)/k
for k2 k, .

The only maximum of z*exp { — k(1 — (¢/(k + a,)))z} is at
z=(k+a) (k+a,—c) L
Also, lim,,, a, = + co, since {a,} € B*, and so

k+ak> k-}-ak

>k, >
T k—i—ak—cfor kzki =kg.

(13.4)

Integrating by parts the integral defining I, in (5.4) we get

kk+1
Iis= - e D1 4 5 B.(1 + S)exp {

[ o 5 (c2) ]}

The argument used in proving Lemma 1.4 yields now by (12.4) and (13.4)

k+akc(1+5)}

(14.4) lim I; =0 .

k=
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By Lemma 1.4 we have lim,., I;; = lim ;_ . I;, = 0. Combining the last result
with (11.4) and (14.4) we get the proof of case (ii) of Theorem 1.2.

Proof of Theorem. 1.2. Case (iii). The proof of this case is similar to the proof
of case (ii) of Theorem 1.2.

Proof of Theorem 1.2. Case (iv). It is known (and it follows from (9.4) too)
that,for 0 <dé <1,

kil plid
lim —— e zkdz = 1.
k- k -0

Since ¢(u) is continuous for u = ¢ > 0, therefore for each & > 0 here is a 6 = §(e),
0 < < 1. such that

k
— —o(t -0z .
l¢(k+ak tz) ¢()I<£ for 1-6<5z<1+49$6
Let I, (0 £ j £ 4) be defined as in (5.4). Then

ii—n; IIkZ + T3 — ¢(t)l

. kk+l 148 —k k \
R I L e RIS

Letting ¢}0 we get lim,,,{[;; + 13} =¢(). By Lemma 1.4 we have
lim,, I, =lim,, I, =0. This completes the proof of the case (iv) of
Theorem 1.2.

Proof of Theorem 2.2. By supposition «(0) =0. It is known (Widder [7])
that if f(x) is the Laplace-Stieltjes transform of o() then f(x)/x is the Laplace
transform of «(t). If f(x) is the Laplace-Stieltjes transform of a(¢) them (See
[7], p. 294),

(=D [ (x)] ®

e s = f(00) + (= 1) ¥*1 J f‘“”(u)du

Substituting x = (k + a,)/t we get by (7.2) and (8.2)
Lucw| T2 | = Suvalro

The proof follows now from Theorem 1.2 since 2(0) = 0, f(x)/x is the Laplace
transform of «(t) and for each ¢ >0 oft +)exists, therefore a(¢ + 0)exists and
respectively a(t £+ 0) = a(t +). Q.E.D.
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Proof of Theorem 3.2. The argument used by Widder (see [7] p. 291) yields
forO<r<t

(15.4) J,, 4= f Lo [F(5)] du

. k x
= k + ay k + ak e—(k+ak)y/t yk_la(y)dy
k! t o

k+a, (k+ak

k ©
—tktax)vir k-1 = ’
Tkl __r_) fo e” WY  la(ydy = Ty, — Ji

Now, Theorem 1.2 yields for a fixed ¢ > G (because if {a,} belongs to any one
of the classes A(1), B* and B then {a,+ 1} belongs to the same class and (k+a,)/k
(k+a,)/k—>1as k— )

(Nt =) + (1 = NGt + ) if {a,} € A(L)

(164) timJ,, = {%¢) if {a} e B*
k= oo ot +) if {a;}eB”
o(t) if o(t +)=aft —) and {a,} € B
_k+a kta (k+a )\ [® _areomr
(17.9) Ji» K «0+)= kT ( —’—r—) J; e .

Yy a(y) — 20 +)]dy ko oo.

Now the argument used in [7] at the foot of page 291 and the top of 292 yields
k + ax

T
If {a,} belongs to any one of the classes A(1), B* and B then (k+a;)/k—1.Hence
by (18.4)

(18.4) ]i}l(‘)l Jio=a(0+)"

(19.4) 131_% 11}% Jp=a(0+)

The proof follows now by combining (15.4), (16.4) and (19.4).
Proof of Theorem 4.2. For a fixed ¢ > 0 and {a,} € A(4), denote

_ a2 \/_2—”—’? R+ k+ a kl‘_ * (k+ak

By Theorem 1.2 Case (i) we get
lim O \/'k

k= w k

(ﬁiﬂ‘)kﬁ") (k_'*'_”_")=0.

t
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Comparing the definition of I, and the result of our theorem we see that in order
to prove our theorem it is enough to show that

(20.4) lim I, = ¢(t + 0) — ¢(t — 0).
k-0
We have -
A2 \/27'Ck k+ak k @ __k k i k+ak k+1l .
@14 L=V (——t 0 St — (= )

a2 21k KT
k! k+a,

1-5 k+ar)/k 1+3 ® o tkz
: + + + e "z z—1)¢(—)dz
{ fo J;—a J;k+ak)/k J;h! } ( k+ ay

=L+ L+ 3+ I s

ce ka1 dy = e

The arguments used in proving Lemma 1.4 yield here

(22.4) lim I,, =lim I,, =0.

k-0 k=
In order to estimate I, ; we substitute in Theorem 4.3 a=1, b =1+,
h(z) = — z +logz. g(k) =k and ¢\(z) = ¢(tkz/(k+a,)) and get by Theorem 4.3

(23.4) lim Ios = ¢(t + 0).

k= w
In the same way, but using Corollary 4.3 instead cf Theorem 4.3 we get

(24.4) lim I, = — ¢(t — 0).

k>0

Combining (21.4), (22.4), (23.4)and (24.4) we get (20.4) and this completes the
proof of our theorem.

Proof of Theorem 5.2. For a fixed t > C and {a,} € 4(4) denote

1 ko 1\k
o= g (0 D (% )

! k! t

Tl kpoo
= M ;/_i_’;lf (k_‘_*'_ai‘)J‘ e~ G mnitykgo(t)
4! t 0

i: e}.2/2 izkn'_'k (k -: ak)kfoo e_(k+ak)u/t(kuk"l _ (l‘ "|t' ag )uk) cx(u)du
- 4] \

= "2 ﬁz—k k"“f e " 11 - 2)a k2t g
k! 0 +a

The argument used in proving Theorem 4.2, but taking here (1/z)a(kzt/(k+ay))
instead of ¢(kzt/(k + a,)) there completes the proof.
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Added in proof. Theorem 2 of the paper by L. C. Hsu ““Generalized Stieltjes-
Post Inversion formula for Integral transforms involving a parameter,”’ Amer. J.
Math., 73 (1951), 199-210, is Pollard’s Theorem 1.1 of [4]. As we have shown
in §2 there is an incorrect step in Pollard’s proof. There is also an incorrect step
in Hsu’s proof of his Lemma 2 which is used in proving his Theorem 2. Hsu
proves on page 204 that if a sequence {x,} of Lebesgue’s points of a function
J(x) converges to a Lebesgue’s point x of the same function then lim,, .f(x,) = f(x)
The following example shows that this is not true. Define f(x) in [—1,%] by
J(X)=0 for —1<x=<0, f(x)=1 for 4™ "—4""2n<x<£47" (n=1) and
f(x)=0 in all remaining points of [~1,1]. The points x,=4"" -4 "1y
and x = Ofor f(x), =1, f(0) = 0 are Lebesgue’s points of f(x). But x,— 0 and
f(x,) = 1#£0=7(0).
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